Two-Stage Opportunistic Sampling for Network Anomaly Detection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principled Sampling for Anomaly Detection

Anomaly detection plays an important role in protecting computer systems from unforeseen attack by automatically recognizing and filter atypical inputs. However, it can be difficult to balance the sensitivity of a detector – an aggressive system can filter too many benign inputs while a conservative system can fail to catch anomalies. Accordingly, it is important to rigorously test anomaly dete...

متن کامل

Anomaly detection in wide area network mesh using two machine learning anomaly detection algorithms

Anomaly detection is the practice of identifying items or events that do not conform to an expected behavior or do not correlate with other items in a dataset. It has previously been applied to areas such as intrusion detection, system health monitoring, and fraud detection in credit card transactions. In this paper, we describe a new method for detecting anomalous behavior over network perform...

متن کامل

Network Traffic Anomaly Detection

This paper presents a tutorial for network anomaly detection, focusing on non-signature-based approaches. Network traffic anomalies are unusual and significant changes in the traffic of a network. Networks play an important role in today’s social and economic infrastructures. The security of the network becomes crucial, and network traffic anomaly detection constitutes an important part of netw...

متن کامل

Optimal sampling strategies for two-stage studies.

The optimal allocation of available resources is the concern of every investigator in choosing a study design. The recent development of statistical methods for the analysis of two-stage data makes these study designs attractive for their economy and efficiency. However, little work has been done on deriving two-stage designs that are optimal under the kinds of constraints encountered in practi...

متن کامل

Behavioral Feature Extraction for Network Anomaly Detection

Early, James P. Ph.D., Purdue University, August, 2005. Behavioral Feature Extraction for Network Anomaly Detection. Major Professors: Carla E. Brodley and Eugene H. Spafford. This dissertation presents an analysis of the features of network traffic commonly used in network-based anomaly detection systems. It is an examination designed to identify how the selection of a particular protocol attr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer and Electrical Engineering

سال: 2010

ISSN: 1793-8163

DOI: 10.7763/ijcee.2010.v2.277